Holodemiurgia

V. Appendix


Harmonic Considerations

The ancient Greek musical notation was based on the letters of the Greek alphabet, and so it is worthwhile to consider the seven vowels ΑΕΗΙΟΥΩ [aeêiouô] from this perspective. Unfortunately, there are many uncertainties in our understanding of ancient Greek music, but contemporary scholarship suggests that the vowels correspond to the pitches:

Α   Ε   Η   Ι   Ο   Υ   Ω
D#  D-  C   B   G#  G-  E

where “-” means that the note is flat by a quarter-tone. By adjusting the pitches for ΕΗΙ slightly downward, we get a correspondence between the vowels and the Cosmic Scale constructed by the Demiurge (Timaeus 35B–36B): the vowels ΑΕΗΙΟΥΩ [aeêiouô] correspond to the pitches D# to E in a descending B major scale. That is:

Α   Ε   Η   Ι   Ο   Υ   Ω
D#  C#  B   A#  G#  F#  E
mi  re  do  ti  la  so  fa

(This is the “movable do system, that is, do is the tonic of the major scale, B in this case.) These pitches may be used in singing the various “vowel songs” in this exercise. Needless to say, there is much uncertainty about the absolute pitch of ancient Greek music; the most important issue is the descending diatonic scale structure: TTS T TTS (T=tone, S=semitone), from mi down to mi. That is, the vowels in order represent a descending scale in the Lydian mode.


Return to Holodemiurgia Table of Contents

Return to Biblioteca Arcana page

Send comments about this page
Last updated: Mon. 23 Dec. 2024
CUggpAEBr++63X65e/YS3qZbogxOiLfHm/GLg79gHb+0wju+YWYgqbWPyPh/yidY1Ks65/sVP/1jNWgYWlQABemZMt1S6E6JCNEVRESBQYCH3qwz8dGSBqgMTZ3Om++WSfHT367ZpUbcUUkjB6DamYM+uco5pG/kJSuwSQvjk7enAOdeyYmDv/fLsKm9SyhFF22LrgwdK/dkybZOe2bhxtCdj+rT1IQR7NjDk4CIDc8qLk35xZvecUen4sE5E5xdL/o6nyS2HSzfemm4ZnQNQJ0u1/voG6zamoFSbtknNuujGkOn1F6v1h2shhKiEmrcAknNGhcTETA02yae2aRnyUfCoBQWKD+vXn73Zc66lyptIeyJK56slgJicK01BAHXXLddf/wbrExBQck/a5uTXQmD9i5/+MWeWL3TKUc+sc+uUIqfIFfAjqXl70unWqOCjntsTrUqvi3yhi/8UGCjmp6fqZNkp1a/dNe+hs0uju/HDu/bE5JAEivSYsMEYfElxBg3nDBLqWq3vRyMRlaklohQMTI/U2UU+cNomAMgh6blJKVH05xeDUp27uw7Jm+4cKi4ejvX92mgbN+78YuADr7++YSZ7dtWYmg+VG2/scBU3rn5SpjtxD7eiRj5wsaiU2f/N3/1qePV7ohIElAMVT2M/WI7MTwAV0J703PI2lzolPIbyYAH/ra8yrN2YyLe1OV8tdyHXteJDFntR0LW7u379+7+3vr/BpzYfUg5JVMB7EEJ8ciSZN64URtigMT3AsZfMuek3X30Z4pE8mr5xRhqQEJ2jHR2hooToQgEXr794Y4y5/vBl3Lh+uCw12eRuC9K5HIZiVjCnOuyC0Xq8uzbGYGOic86NcROM1sWyoGem1JrYIICETPZidTuOhfJ7/erN8wO0ZJieOYbd0UdhdF+GU9wJUJSJ43NPJEqDACjRuTHE8PqL1ftfv728/G9LWRnCpK0p5sPpzhXZ4PisFvM9KX30ooGEHdxO74eLVREqpmsXXSiPmynpsADAXYDXX7wpDKa2NoSpVKX13/zy5ynE/qVNk9d2iVLUNaDSTSVoRwyM2IY4QS1SimLP2LTEhAJ5z1yxOu1qwJxSdQAfnKybulZdt6wyBz/BnqER9vQqBy+UeYLaudGeXd3889tPP1vdfj22tUDRlgd6dHZZAdMmq1m3vr9pKuxOF8kHNe8AcrGqY9uevxqSTzWK6ELp6kkcmqqpJeaUC1XeryxksfY3aUsL2ynVe7euuDrptL93nV3mlBMlyuH17765/eq6VYvFWee/dSda+QeXiRdLw1tmYJQKVeMffFsL76PYM4vnjnjA9f07qMWb3//8+rdvjWyrQ7V42dW1iA9Tqb9zSqiwFca7MYRUav0YvGkX4TGgwPrnP/0TgTB9PXItlGrGu9sfD3ZPwJCV7hZLA1yJPbTGYIUsgHdMKdATc06JKD74ihIBo0KtTXSTux/zNqJu9XxZHaq0S0I05UklTKXRRzS4CA+eUxJtW/TO8mCibr7wwfMh4xOqedug5O845YgSqwME8vjUtkqlmCoBTKx0l3IEYn26jBtHKdizK1Tq5sPb81cDijZ57+/dj696IZrSJsYVF8sXp/TpF5/fXo/FiZ6+TbzjGlVTNSFNSva1xOjW5Zk3l58N6/txebaKD67VvXyhko8+Tr09//+oet8eSXLs3O9EB5cnmiyyMrIYU9kVqarp7KtVtwxba8Mv9BmuAQMWIEAGFrAg36vrFdbSAjIW8OK+EOBP4w9yAQMCLNnGVY9G29Wq3YxCloIN1pJZrCQ3mekXJ7JmNOgXg/6TlZkRQR6e8zy/p+uNewjReX3e8TMVv4TNcDefvyFICgoRXSisMESCjVS5wB6oNi0513/9H36cSnpz1aeQUWAIXvAWAKKz1aE6Hqu6FuetTtvsd54xpmamVIXMiw0iYwzFHFF6u3HBYy11N++uF8d9lXNJT7E1c/ewJgZVPkR1Zob7u3Zm7HA3X7wRr9uSc9xHxioppHvYoJTqzJAj3ttQWCGPTfRheX2z+bJxjxvdvuFc5BgrVlgtkeHG3pqLmxicUC0A5BCSL/O+FeI8PLr4GLrrRcqlPE2UD4kalfQbWwBaM6ctt7CCnNVc5BBIcVSqErxjDYtjXP7ujRuGUjOs2MYOWKO57GWLOw/uYZDzOeOyPMfRj3o+Z5xBBppxdZemlMJq5p98iTnuo2wk48w5i7QJM2Cp5FKVCkAyubG3DZ7H4FBJ5xxjzRHqmldCtMShSftUYs6HVEoBgPLkS1Wk6iStSyluHmyVoKSEDcYcpdKEjlAzHbZu+bbffL5dXH/tnBOioUItOhtTIhaZ+2IZZ8knGhAhVwA5RM9RV6mglOI1ApQcE6sY1CU9Jaq1YM/oqqjZwj7cCdEB1LrtXNgUn7vLRfltIY2FOGvruqoODPZgH9cNno/uzlzcBOtQiJii1l1d1zlHti/IZNmX+By764V3AfbJXN6QCee4x5yDj9Fc9OU5Jkh4xLRPiAhl2jCiiwwZ50oIHaIzpnN2k/ZFaw0F6n//438LyOaztpRC8mZzcVOeI6Ic3TiX81QindcrVqj4ITcI7IHEl0K1yAUhCSqGQrVatfkQ1UwXKKyWkAsZfWKOABDHyGqsGGLFai5KzCE6qTulWoDshg0wJl631aHEHJHr8hwLMEglH2J3bTa3d1Vh1QGYYP7JK2VyjDlGEnpQm0+26B5seA5f9e0+gVZdiAGqJj05esLyNhArQ8zapmrWm2/nYp5j7noTn4NS2rlRiCbnhGLOX1Mxg+kxwx4AWHjcpGOBBCiYc07WEgWrubD2zlzelJhjii+zLjXTBJwgGXnJBZVUylBX45XWnfejD3nq5e7A2oHMEZ3uqDNMk0IaJfMz5FzRSB12kLK397dUwNCRlowb47imcTzkpC8UmflJxe+zV8ak7Gk8lCAZ00NOeRvC1mOjYTfZCKg9x8+mwT2VIv3bdyl7UoenMB22SacOAPwMU047D/3bD5ASAdpI4uDtmtilYWupZ0dvQF+p1dsf+ezHsF4PgzaKZhLkqfN2TY1xzqdOuzJGm46U68P9GgFQo7XjcH/bmXfUutdaI0xWkeF+/dK9pwqKc5VzJvVC/dO/+BNEWZ58jrnsCzQgmTwescol7VJMsTXz81bF5yiZLLnEHLOPTKK1G3PZIceYktadeI1h67L3QrV5G6AUVrECGQqQmyflzF8re3+7uFrmbWTASi5i1pZDzjkWKOJMVhmAg1BtztRxssiw5lXMkVhT0cXzhUqeVKFNLoUdKsIhqdliePjWPY7ztivPWSosqXLRSZQJUvCO3Ou0hBJ6ErnKMdY1C3azvF6lVLz9Nen72tliY2+XVzfjw6Y1fY6xYkh6LOSsrlnFQIqO7QG1TDmVfZG1LCkxwWJwKKSeKalFjYJs2eFxYy7fRB999NbepeDzc0SU9V/9xY/VmQmPVraaVYxxlkoiY559vFtcrvI2ehdIaV2O02gfufqqb90XF+y4vL7x1oXo2b6Qm6PsCqux7ItQsgArT0moltgPWEsUynmrZrrmLOdYngrsAQXG58g4A8D47BCQzpzAoa5Z9ok67CUV51xrFuxQRR9jjm/eLvYJyPa9/N2b9BjHzT9r8zuj3UgtSb1B6lJ7fydUWx3oPF/iLgrRkCWYMTzWKISW+qvN8I/99e8Ha7GWNYqq5OpQMcEgF8ZYgTIMn8pzgj0TSuVDFK9b5IIdKjFrUbDoYqnBh3HzMKRUaPC5+dXt4vqHOUdan98sFkJ1QsmSS/1Xf/bHIYbl9U3a5rRLJRWiewJAVVXBbtKxtGa+sZv+6ofk98w5led8PFbIlVDy21/+f/PzDgWWBFT2xhRlIwsrFSDkJGYybyNwSCm1ZpG3gVoaNRdkWSZkNCvAX2N0HhlhogtwSDnlnGi/KU8FNSJq2m9C9Kxm3gVB3nlW6qOY9y1W56O7YzUSI7A8FWU0ESYYMv9E6jkssRCUKkE6OdR1e1kLsbT3ty6Oi34JUFC05G6EPcR9bGdzKTs1M921CP8S6KBg72/hyM4XYqbqRxullu2sl3IOKYYYU0rzbhmdY8hKqdzDHT/Ro0rOr2is+unzrb5Q0AB1/khtMI5rc7VCwEZzzdHa4aQbmBBhOecG+ertj4i3rIxRxiSfgLwrBLnmk7RtgnSRLeDMpF0iKyBNj6e/SWAbSCn70a+997CD7sK8yPAhg/ejtSMAN6b3YZzGlWTn29rx3qad768+pJywQeqVNpoDgNZdOo05c07TW+WE4dFad3kbhm9so8FcLbtuae1o7Uhb2rLvX14NAIId7H1Iu6TO9HB/i1orY7wN1gJtlnkbCDRN8g46tE+KOdMNnz/lHOhLrn/y7/6ovehzcOOjwyMWVt5cLkhQnh5jqYqa6X2q8yGXGEsFFRQApmeCMThCufv1XVWV1e/10ZXh4du2XeQYSW1J+DL+WhFPlAoAKCc+r5Z6pvYlZ59ITlueiguO7RPsGQqUouv6tq4ZkzWtgTEHcTYBGJ0dGEpj+uFX/9CaG3ao0i6Nbi1rRN3Jtp6bdhxt2ZcCBZ6r6AOJq6gZ5ZyrUplg7alUB4BSEiRyQTu7efO2h1Kl4NXM2MfNfNH6EOAI7MDSU6R2AOyhOgBDhoAxh/gUhdD2NFOyj3fL69Xdr28Xlzdh62CfoGHIdfLR9G82DxtZS8ZYNX7+2+H+9t37lbdhtGvi572ILKfu+UmmkHZ0q2LK6eSj0+rk9t95IKY0nCx5fuchJwINkMyL8EYkTjpZ19B7Ty/YrYy/n9hJ6kwTE+rFL0fvirgAdB+TUevlp3S98SEk731OBGPy98H7EblOkJZ9/+nzbWc6ANBKkbiTWNBEAaZS7dPnjyQu71aGkArINbHxJzjUyWT4feeXTx4BAUHrLp1aWKTlSiewr995mk9o3WnDCWFAF+BjZ5bGqJzgH775e6063WgSV70gBF/8b9M1AEgAne7SLvnsEYCQhuRQJO8u5KRPuHzSaL6QtUmqRlUscDwhDYF8awDgdz4Fj4j0ta6HAQG7lfn0zW1nlpwDRQUAZBoivbC2SWJFcQjffwPUDfR+1GYJAMl7sl0SEXHKDwCa8Pjl29U4TE7bRvPx3k7CPbLkcXKRqhfUxMv912hYf3NrrlYkgvN+pP8noYoyPb0TGunQ3UawjoHgYzkHsk/64Pu3H3IO6+HT6u2PGoRPn2/JjswVeAtEYNQX6nuCsqnzN7kJ/fhCH6fr/33XID1MutH0CkQM834k9AeJD180JvSptOmST3RooKfHZ09e1EbDeGt9nv45vSzA6Ur4EbmeZI0Nwi7hCZtGtfn3VGww3H/szDvOOR2aJsnQyXI7+rG/WjVIxDY/CdxyWr5f0TAwb0PaedQdJTbY+7VPfvX2R42GT9/c9ldLutL02emV65//7M9zDAywOhTvRs7b84UW4nz4/G1r+lJKjCGFDCXBgR1rtP9ih+Hbbr7kZyo+h/KcSy7OW/c4VCkjk8CBv1ZEHMgpsz0Tqi05M8GI84wCxetWiCbm6Jxzj7akyI6o2zfLVQ/PVYxOzRYNQvxNiD7UtYjBdZeLzZe7xeXK2oFE/eaik0bsE+xTzjFBzfr+h/HR+uTcY2BMyrY+HiuhDAoRn0PZlxJjqVlKSc2MtQNrGDCg7r9U6H5jzcWbzcM6pwmfmHPMOSJnNLrJKbrHoRwq5CpEp2YmxoA1cy6UGFA00UcAxhD8kxeinfft+Kt/Ljlz3hIyUak25xhjlCj5mSo51z/58R+hlgyZdyNyXR3K8Vg1mgvRha1l+8IaTPuEtRQzae3Guc3q7Y9qXoWtK0/FRVeORTf6d3+v/9X9wBBZLeu6DtYur298CKxhwW6IaatmpjqU9JRCdCVG2DPZyDdXCy6ogvZ1zZx3JD5kh4Z8dzXHUtHUbGntxpiOVciA1Vy4YUChG6xjiLKRG3v79fsfCt5VKW7sHRyYHdZf3XT7BFSqq4tFicHZX7tg9fkcdkB9dTFr3W9s2iUhpFaGLEoSNQNGP6gCVtclPjqp57BLKLR7GBp53vVtdKEAFAAh2hAd0b9kzVBohqDUcmPv2A+YOjPx0ZYUu+tFtI6cLwVK/R9/8bO6RvcwLN+uXHAoMDpX17rR0CoRXKZOPY36Uk431x9yDtG5tC+sYeaiE6KVBu2vQzlCO5uX50TWQ+ecbjQjNYRArCbBBCmWUGgUrObM/cZVUGQrZCvcsCkAKLRk0u98jAEF1nVVAfjgqwra2aLRtQ/BeadVmw8ZOWOsdsGpmckpr//pH1qzPF9oJRbZOzzXcYw0k4IjQyHOF7rrl8hkfIoxx5Iikxi8K/tC+vvoLIq5mpm74SMBTWiAVXPhgtNKC6VzLjE7KeRxjygaxqQPG626+GgZ6nZmwqPdDP+I+FV7WZffMj+OX910yccEwGstlByGT4vLVZVL/ZMf/1E+RIl6dBYbjE+RAdhHW3yEWucYUWN8Du1FH2OYy3n0oaSizFyIFrkgaqYfQ9kXqScmoWx1eSqUfUKDRuccMhQzWQGmHCtg5TlGH6sDkCew4dIRPgAAIABJREFUPgo3DKh1SkmplljW7FClp4QCnXPy1ESjNklJkWCMBcoRkLFm8/Dt4nIVcw5hw6Cpa8wxqNkix3jeivFxg7WsDuV4xH2CukYhdFMxREnkLbITpZyQSf/kYgxd97V3G3ZEZQxBYXJwsGfnrfLWaTlPJQW7iSkp1X7Vd5vPtwAAe6hY6a4XkKrN8I+MnS9+pw1fQvJFmXl8dMQOZD9gBOx5RXJJcuCrM42A2OjOdKg1iSaJFBCsXfZ9guTziA3mnIK1FLxAWjmfR86xv1qRU5mCQMLW0hZtTJ92ydqRc568JyYWTeZeokR89pyTYi6TAQY4oMacE22ep35WBg5ED+VnaoJveN9fvQt26K+WkIBzdfvN/6VMn7eh6834xWrekbbF3t/a+9u8DdRYBI66mfTxJNakYaQxvVYctZ7YI5pCVk6y32aqs18g0jsPy/cr1Npnn7zfeejf993y36xvP3kLy/erKb3B/8vkQNglOtTVf/OLvw52kI2mWBwAiPvog48xumEjpS67Qk0655xkUio9urHEWEpCrTVqgvaVIzAm67oE62oUG3tnTFcBlMKic/kQ1cyQAoUhIkNx1gJkVqHzG606ZwfJ5+etKIeSvS8VealJnmUlk4zhxm201AUK5ypEBzUjcjBAHR43895sHqxWuvoBC97p+VeE+6IMHd3q8lxQaGSIinrsUHLRM3GsMftIuGXkDKCEx5HCgIguXKCUp0L2VbZn5bdlM94tLlc0w6mAqZkOdlPXTfbJXHbDw118dIjn50Yhyrt/+jullkK1YesklzFFrXUMWeo5lFL/7C/+VBCPXUuhWhRCCK1V2yBrTV/zqmLAkLGaYYUJUilFowZkDJFk+LS8kMc8pkTQb8glppRSAmrTM6TOqDiTFeCJ4skKYYy3NI3p4nMsT5HixnLOsuVuGKTW6SmJmZRy7t0GGEMuyiG7zT8vrn8IUANkF/zctHPVfvuf/3Zx9cMSAzCWfUSBdY20dDDB+EQen5ixhZW6FtYO5DBATi18TjZpwojTvWIfN1rJ7BM0IM4kK0hOCNhDqVKVoZBgh5Uqw/L6xoVg7RoObHHZCrW097elKjQ7oapSGe3ciAzrn/6HP0aOKJR7GBiy6AIKAQDkXIg+llRooEMGWqnE8YjIBXJRsSJUyw7V6Mf2ggirsmKgjfLWmcubcsiwS8osog8MGdTgnFOqLSmyCp13KLQU9d2vvr25/hCsY8hKAmBQAeMc3BeX9kUpUx1K9JEhvGRYlF2RYm4f73IIDJGyP/SihaoJdtNe3pAEhhrgWneFlVJKlQuhT+39rWy1eN0O97eLy5voA+XyhOin1t6+EESx5lXOJ/idxvJUQvSykXEXWcOQIQMGAOTqLVDiLqaQzWXHfoDJ++hjPmSpuvKUSpVIOgYN5JwYYwxY/R9//rNgNyh0SaWkAg3kHLN3OWYmGAUFOeeqqmQfo3OlNPHZkahNtvjtN39vLm+qVF6op5zjPtUxxRIz7AG1jM+BSOSlKpJJUl8lgmUjeBvm553zVpLeQuhSUnRjSUBirLouzm6k1FBAzNoJjxadbKREDUdGNywgi2Psrs16uJM/kGqmo4/5EMsR1ExXGUj7Pp3jjkUpE7ZWo655FaIHBmqmhWjzNhCXk8Iozlt1hCpsXXdpUq6EQhKvt7NFlYvf+RS9T7HECEdGMR/UtRavW4aypKJmuq45UTHETFJsBXIR7OYF3q0pwfCUBvhdJiAFYwHA8PkTNTpgl9QUpGVe8sVIukwnVTqIjoMlrNILXBIAvw8jmkhML8F/O/B5pFP0C4no5diMXNO+TWIbwgS9tEBOr06tAsBGj358kYm/wMRp8wQA7z1Bml4gSi9hYcv3K38/uVGQ40twWN4GODV3k09kSQOA5aqfBLEadj7Ta754WieuGtfJj1OM49ZO4WUnX2L19//p/9QvQRXfo1u9fHcpJ3VmqLmxXv9n1F91ugMAfoa33/zfq/d/+JJC+GJznMT1HDlX1g6QkzZLb9cvDHJvA2Sg60QtthcoO3UFqLtAQzsA/n2YOrVWTkj174d0fJfKQWZmsgsSa+nF+zfdNKc0ECp7pmYR1+TL1CdsGHFSX16f+urUVqG8jzGMq7c/ov7g5JDw/kRChenbpCwPs/R+xCk4E60dCSRf//wnP0YxJ9o3FAAOUIBxxpClpxRTlEwSTkUa0fXL6OO4+aU2v7N5WN+8/b28jXEfO2NIaipmbc5RMll2hRDbWndqZuKzKyn5GKtU6lrIFsfRwm8rF117scjb4EOIzzH7VLFS1+i+WGTovJu3LcXxzBd6nyBYG58nG7N72EwinxwIokRTxkZDXYtgbWHlBV7AGKSQUbBgRzoYTh+2hvKcU/TlCEq10qB3QSldSoEC7IikrS9Vqb6HXyuslFTmxkDFgt1o3W2GW9ageK0ob4g2G3Zg0oh9yi74dmaE0Nm7sgcUqsRMHZpXKSfKRaFwMs7VyaqXupWh+j1lb+3obdh5WL3vV+//cBw+IcecT23nkAGyvlATHvdCoUZztdKN9n4c7j9SC0xzPYb1cP9xvLfG9N6P3SnzjEbw5Gyl36H26o4e5pyo10i3bc6B8IwTRiEDnNSVAODvQ9i+QHuBAuQAgAAHWnfUHKSxvvd+ultzAgDy9kzPFgefPZ1s6KVINeJ3nmTx/kuAHWjT+Z0nVXrOebnq/TjSUkyKREtWXCCioSYK4HSwAKh/+pMfM8YAQLxuJ7CGwPgUZSP9GCgoRqi2xLCx61JKDVobqKoGEcfhjvBfMXl2YJ/+6e/e9P8FlJJKTjlRGf7meiF4h+SQSYlVwLiMzjXynDhQ8dGxGqWWdY0kSCYdMslhao4l5lKSUHKf6ppjzjE6N+9bZwOURGMf+iXOpLUb70asJcWqIQCKKTaAHSqKoxGvJemRh/uP83ZZ13UMDrUm7mkMXs0WOWfORZVijrk6lJqLmlc1F1UuRIhNu0RJO5Pgx7qYI2NQH0UjG7fZyFbPL9t9go29m593NceSs/fj3LSMNZAh+sAYq3/6538ixZzV4B4GVqOaTTFxo19rOffPATkL1nX9ojOLFHJ43EQXY0r9W4PYlUP2cVxcrjb29ubtfx2dK/sSgyNXAdsX92ApP4G/nki4UFWt6ZwbY4y60T5FrJFVjFy+qSRgwIDFXeyuTfwy6fpyTlUuMQfYAZMolXDDZr74ujwlsvEwYBu7KSX21x9CdPO2JY4JY010nnxXMUZErDKQ8f/m+r+Mzw65iMGxIxJDwaeoVUt6/xxzyh6QVVDoREmlEY3Nw9aJ15KaMUywsi9El++uF+7BFoD0nKtcoGbIkC5AOhaOjXOO+pIAUP/iL//cPzlIqb28obYJ/XFOmTgN1QEKK9HF+NvYXRvO23zIksnNrwaKhWkvent/K/mcUipQCKFaIbQQTcUktRvJR1aeg390wFjOSYo5VoyfKa2kfRxLiuUIsAdil5VckOE4DICMKqWyL96NWs7FTFo7Ct5WpSopTbEHOW7Gu/m8W769cYNtzTz+JgIHRPR2w2qkWJAqkcpc337zt8ub/4q0b8iFC85cdjHHAkWjdt6mfRJCo5iuTUwRUlFGVwB0WsqH2F2ZfSph68RZG11ozXwz3Ekxr2uh227zcPv19Wp0FgDUzDQI/jnQ90maYr/zkzQR9pCguEcLJa0f7jTOw+NGy3napwKFoGHUZirP0z04v2yBMbKFRh/ay75ixbuRUPNSYXwOdc3qmtcc6ZK0bSeUZIisZqyWyfu4jzGGEou57FzwczmnIKzgPel/sZYokNVMKeMehv7tBwIq0nc0nYM42/zqFmrWdV/PL5W3oaSIoi0589fKPQzIdbcy63+6/WqxKFWBBMPDp9Xv/rflOZI1iES4VWHdpalrFn0sUIzp8jbWHCnfRzd6ft26wQkly3OJ+0jqKYCaAoNIH/7mut982eTg5n0LB1YK83YjUZOcMD5Hgv9zOofniCjr//3nP60ORc2MVq1QkuDa5vJGKkwhM2AokCGjX1DDlArxmwg1xmcvzqYYus4YLtoqFRc3MWasMPpIh+qwtRWUusZG1ylm771SLQo2uXkaqDK0F4uNHdh+OsugkohYqlKeSkwxPlop5iE6UhBR+igdtVxw/fXX7MD4a7FP4JxtTUfcOjvczRdfC6U2n2/n8zepZK3U3f23xOYBAHHWxhyQi/BszeWbza/vYkpv+kX6bbbDWkpNd8/m4RalrI+MREQJ0pvLxfrhVqsub4NEXfMqH5LzjjFGoYcU/Redg6owiRRDSowxVhhJntKxIMP6z37838EeyLZRHaDkDAxyjqR/so93bI9EeCIkuTF9sC5GRwvU+UIll2Ujx4eBIROq1eo8xkhPz7zV8TdBnLXU5xh/NcCeUbOoFEbJ1nF0cZ+EaLQyOUZgUHaF8nvVTIfodaO7qwUZV4VqZYvui6U9tuS4uFqRwKbkTDE4NRfD/cfkY9ct9eWpCrxY1HW1L3V8dPk5qItFgVyeMwl7qlTZh/V88QYqKM9lftUKcX43fCt/IGuO7AfM+7GqGKk3EDCVSgpZSjW6TXsxB+BVLjE5KXR04U2/SIdS5VJYKUcgvg4ixjB9OqHamlcUS1T/zS/+OscIe1DGkO4j2LG96Mshd1cC6/Ph4dO8XfLXopSMiO5hKDWYyzflUNTMxC9hftmuHwbGESukTosQmh0q2ANR/pEzoczdrz5286WYtYRjhVJiDm50renZoaJPK2Yy+4SaJjbC3t+Zy5uYQ3SxYkUr5R4sQdkrBlihT06rc3t/R18oqxjtrlLMF/2q5rhP2d6vF1fLsHXB+/lCl0PFjhBigARi1tLG7t347v2HlHN8irTSFijG3GyGW92eU1LLXHaUuFV2JYYRGGM1SCajj9Wh8DMVgiXIZimMstWyTyXHdCxQgRTCBSeZLPtSsfKyjtU/+Xd/RJ2/nCMCRh9ZjdS4cI/h3Kj0GGGfQgw++BKjuVoJ0VCvwtpBzTRjdTkUmmEBgBBNsG5+2U5Bh5zF52jt5ub6Hb1Xxpl/8mpmqKRrNKgLnOvFp3/6O9ZIQuLlGKtDQSWds4yxFH3alxQyNFB2JUHqepNCjilVFUjUMQeyGtwNH5fdOxR6SlGyTkpdcim7woBFF9VMDw93ff9DFMLagUzV4dmyQ8Nfqym9yo9kplj+bjf88k6otpSSoo8pkUNCKHlu1LixKLRQtNiyppLOO3PRTcrqbSqstBede3RadUeoacBXUhFKxtNk+BWJ1NSZVmeazmIA0xEGAXc+m6sVgdbpSJLzRNAm1n2w4y4BjXTon1A/ZPxig7X8TBGpTWtNpFp+prRRPowvrrTxdhi+sbuUV+//MO1S8iMJ9OigRLoPc7UikMhEa2r0eGv1hYKTF5fez+jH1dsfUYcp2HG4v4UG/M5P1CdjUCMA16jD1g6fPxrTQ3M6yHHM20mtRo4za4eP/+9HbbqcszG9TxSVTU2J5O+DbrS36wY5fWn8TCFHe782pg/W+93UVet0R6RgOAnrAAB2QKez+uc/+9MQPTuwmou6xvhoWY0VA6ghlTQMn6ScSyZhn6pDRYRH2Uhqb8UwlpqRHoI1SCBPsi7BEaSW7mEAjpJJcdbWdQnRE92C/YAl77urhQtOngqMHOOb1aKuG2tHdmRkd2k0xBCzjzkm1MhfK9liSpliNovPAKw6wOhHKaW56EkR5O0IFUit1ZmhgrjmzNoNVigV+hjLvnz9YbVPQJmiZQ9YsRcRVPAOJq9nV9dVXXMAiM+uxChRRx9I3sEEQyb9c5BMRhJPxIi1DI+bUgMChujLvsA+MUCGkPZFKZ1jqhiQ7DzmWA3/+J8ou/AUKGsn3U5OmmPX97uUG+Sfvvmouw4AXtp2nOOpHXaKMsynjHX+nQ6S+lPfSckgkd/R3t8CR627U6dQB+uJ5jHp0bR+aZlNIqIrReG1pK4hhd2L6IpaJqg1WZoanGh89A6JeJbyd2w08tSTvOeFWUShiiTce1GPETyen6nh/hYBXiJpRzv2VysalHa98V+C9yOJuigUgnqfL43CYAf8HnCdrver5D1qJETazk+gNAR893aFjfYhDPdrQOjffiCF02RQBchbimy0+SSAJddG2iXvPWqkb59z3vVm2ffG9N3KkA2WQNhad5xzUjaSwA0BqdO5fL8ikdqEMwgeAHY+c66C9Zzz6VpChpzoSqBG+lekrVsPgzITupDeYfJJnRllND/DiWiQv+uKT4snoPcjUZyIJoANcq5OBKhEBLq8DZBBa523ATVCAz4Efqa07sYvlgTOdLP+K2tGTvpCwW6SgdHq+or+ADWSuhhOZKXxiwUAb8fOLMfbodEvfe2pI+Z3Pufc9YaSPMZbCzsg4A3B7bz3nEOwdvxix8HmbfA2EDFil6DTy9F+AuJhvcD/iHYEfOcBG+zMkoCjxNWzdqQP9tJ3o+1h9OuwtVqp8dZ+l/HRIH2//Eyd8JpTNnQmMTZwIl0S7In+IedAPUS6sf4VKhVyf/Vh9CNlUo1+TTfHaEd1ZpJPZGee+BA5kTNHmw4A6J1r3a0JMpUTiVwBoP5f/vyPpZgnH8VMIsfsEwpRYqaKlUlkBQqDkopSxj4Mup3TCVPLuX9y8NuqsBLsOB33lcw5idfS2g0CkpOLFUbtGvFaBuu0nDs7qItFTpkGpF1v/BeLShJAhBAGzjuSD1W5pGNheyYbORETAMquEOoZAHLKJUYu2ooVijsSogl2RDFnBaIP5cSVE2cybxN/rQhMSV5XZOifXDtb5EOsMhTI/DWiUM5Z2UiKB2KMTZEGwSHDkgs7YsVKekpa6pgDMvTPgdWMVcx5J2u5cXdQStoX2Uhg8OZ6QTx1Ag1HF5jEAuUVAk6YJOC0UOZtIP/Xd8OdHSSfwtZ2/TtvRxIMkyySerPadMoY7z0AV2eGgEQknaQxGT9TL+hJ4FPJQY8h6TWQ6/EkdfY7n7eT3j9YS+kek3gUEnI9NYen/6YSBYBasNPNa65W3o+Ee6MJCQISd4nemzL6u+nTqTKBE1Ap2IFExBMyZqKoBXO1BKA4Gg0ZXvYPAgFTv1pr3a3Msv/95fsVAuorBQDjvSWUFQFvu97ADhCw/qu//DEAUOY2HZEoXcM+rs3FTYiunS1QCDqjzi8VYQ/FrGWsUrMFO1SMMf/kSbJB5k2skJoe0zx9F+OjdcGjxPJUGDKljPNWNzr6wCSWwmIYF1cr+k1kqC8UgZByTKWadkiGmtWYskeupnCNHLJP5wuRYmEHFneRASOjJEmvwtayIwIDmiQL0eRDyjnSowAcSlUQEBhYu4GSfHJQMwSEhtGIWAg9X+jjHnOMMUUh2pJzORYh5MZu2ot5lYEUN921OR6xgpK8j89ZvFZusNBAHCPx0JWZD5+/ZRKlkOv7YXndp+f8ig4BANhoeCEfhq3vr95RpRy21t7fTvJuG2ibDVs7jduo/m0QOabs9YWikQ4ZRYb7j96PCEgBRVTFA0Cjpy2IoKycc+CYc6BwQOBAGGNrR4omgpxyBs4heT8BEgEJxYMN7nw2pqP6CjX6nSdVNkD240hJS6QSyxOQD8J2SkuEk5Xh3dsVcv3u/Ydl36fskSONEvM2+PswVQ2NpmAZY3oq8MPWT5FLHGiYzDkSsY/cFbADZbQPQRlj79f92w+wA8iguSasxavTdkSDVqDNgWxJNMcmKu7oR36GAJOUnD4/bYbkNEo+adN9+nxLxx/YgW50f/XOXK26lQHg9Ox7PwnHtAHg6P3YICfqKQDSSXC0ozIaAbXuJuFbSjSoovIOTxw3ImaQQ/aUN4knhKW29+uuW9K3M1V6MHmn1Jmh6wq76dXoku98/vT5ozZLqiy07miFOd1rwM+U5pqyiqbC2iea7pLpqkFOc3xlNDaYss85JZ+CtRNcuJk+Jn17r8zV0toh0Ko9iQmBn6mdz4SnRK5fxtfejoSrfiHbUUVl7UBWr/5qhQDqTHe9Gf16ymnxMHz+aAidnhPqzt7fegucA3JNKBYE9HadfFquegSY6NvZf8e/3iXIE0QZTieDqeSlGzl70itiMz00tPcY03nvIVPm1cTzPWkmp0WfqljKn9G8A0hEipl6BMbQg8O5sve3ZC4jawIJLCdCagMJ0i5lUnIO95/UmTFXq+lSaQSY5pd84ptqAHhFjhmSUZJYk3LSgeg1WgOA/xI63dF+SIBEY/rhfo0NJp+A43LVJ+8noQrXYet3CTTXo10D5GAHVIRRhwRAUexUntPX4XeeimjU6O+DuVrR/fjdfwhAtpmXWB9ItPQZ041+BMjTcRKmoLxxnIJfc36Rh0ybORX4tArR79j7W+898Kk98LIuJUh5O92q0ODLNaOngajqVBlPO/kuhe1ElNe8IyeeMR1ds+H+IzVXpjQ0SABQ//v/8d8yKBVroJTog5bz6EN3aTa/vmsve+SsYkC9M6KbW7tB1NE5lKjODApWChz3dalId7bR7byUkr2DBvEI+VBGt+m6r6PbVIyxfQHGgndpnyAlJnTXt/7BEvekPJXCyrkRdc3yIQEAtYtDsFrOaQZbnvPoxsXlTbCWqsPl236firOjbt+Up4RChK1FKUnRVp4j9f1ZYcCBpG3dpaEIcKKW0AjPOSu1pFScVAqUBDXzcYQj8y5IIeNzlKpzD3elhpQSNgh7IPKGUga5qA7VxJz0XjbEIj15s/awvL5xD5aCMFP2KCTUWP8ff/OL8GgpMxQYiLMWBdv8+g44zlvNWJ22Oe0TIWQqhkpNXZ12Ng/Wkb+QZuUMWDmCUhq5QqGJtBO81zgXSqHQJBmnvNh2tqhYwznsU01tn+BdyfHNVT/+iz03qoRC4ksUIgTLjlAxybnY2KHTXck5RkdMnn3KALwqVUyekpnG9S8ln6uZoY7CfKHrI3PekVG5xBx/GwmDAjug/LLN51tz+YY6yV/ddIJLViEwwKMsUAAAKoBdEqplFVMzM19oylw5HqvyXErOzg7pWLprE0Mk6qUQzfD5Uy6ZumQcm4rB/LKNz5HGnFixV9YOy7cr5Ai7qUcRrEetjenWw7BLwM+UbiZhGnlfh/tP1PAjPYu+UpTn6Xce6dR3f3vimnOqTIK1dDKkFaS7MmFr/zWWdXrwd+k7SiOtsACZ1qDJuqU1ca3I6kU/hRIxgbgRAMvVfwMNWDucyiQI1k9Eihy63kxCuR3QUZkMi3mbUvbB2vHe5u3UNkCNWmtjejr3Um2Tt2G8tQi4vh0AOHAY/Rq1Nqbf+Um4BwCN5l231FrTUSZYn3zyNlCHg+Rfr7TuKCrTB592PlhLHZickzE99TH8zpNjmzwB5GnueoNaU0mTtwkgIUDX9z6MpJoHyMP97VTJNNPSTIWBtwF21MjjOQfgSLFoU68pT8nTVM/kDAiAugvWpuC7CzMFFXCkwER6z/SGJ00RTCmHEzTMDgTmRq6991OYRaNpYyDZIe0upE2aegxf7NR0IZr51ibq0+wS3Rn8TBnTBzuMdt1ffUCYTpcpe2U0QP70/3xMu8S50obTl06FAD9TL1vxK8jJ2mHn4d0ffEik3dQ6bG3KiTSHVCNSDis0MNk8Ia0/306Fk526Rqi7XYLV2x+N9peEPtFc8zO0dlBnJ8MF1wDfWc5pYzv14GCyxHK985lOlepMkzOZcz6Gdf/2w/jFAp9c88P9rfe+W5nJqwl5uF8b01M1BWRHPTPK9GmX9BWl3KSuN+M46itF2Gaq66lKIb7b6SpOfSQzaWEnLRUCJu/D1uYchs8fAbDTy5e6IFgLp2iErlsqo+lxmSz5Z4buCaoCAGBSRaBgMZTu2ngX2L6kfaEALylw/XCr1RsohXHGCktPEQWK15KhZgXI85VKYkcsVcreoWhkMx/9CEcg2K5sJIVTQgH+moUwavUmphhj4KhjDsDgXInxccMQ29m8YhjdKGbGPVqtTMkZGW7scHP9LucSn7xudMwh7uJcztuL+T6VKiUmsDyXciyMNULhPpWKATLpvC2HzBirjyz6+Oa6//T59ub6aze49rIfPn/s5m9qXsXnKM4kcgzel0OhTMqcC1GMsk8oMB8KMXxRyVKK22y6/p1QWHIpkMtTQcGqA7Ajs49jf7UswMpzGv16eX1zBMyHiJxln/KBssARCtQ//bM/UcbkbUxPsa7ZfNFGl1nD0j6xQzU6u7hcOjeqmY4uEhBk87BpEEd71170yIVs0Y2OeMgoWoAilSDKHRPIkPHX+GKIQK6CtQxYaxYxBnaoyq4gQxS4eRik1MhVeY4ueq3aKpUcIxMMaij7Mm/b9edvF/0y+ogM1UzXXDS6dl8cMZ6iDwwYqyD6mA+JFZYgkVCVgugYMBecrGWOKUEqMetu7t0YU2J7FqIvsbRmUQGDVOzjmjFWQSnPhQlWSmG1ZBXwM4zPEXZg+hvnNuVQCGkLDQTvSTenUZdcUollV8zlm0mXtyvkdilPheQRQO3oCUlA653NUwwATG3rvE00UESNw/1HAP7u/YoeouH+FiCTnjLtErXd8zaNX+y796vR/priIIi8T2a0vA2Aky3dmJ4IIQCwS6BVByfoL4XI+jx2K8M5jnZcrvrTUIjTfhu2PljrT9CMCf3+XfjD9P6n7ptGrTUxg+mMSvNIbdQEPmhAN7rrTd4GbThA6q8+UJgXUMhVnvSj1o7IEbUO1urm1F9pJj19zmFq6p0U5mHrl6s+Uf5TBtoRXyTs9c//8n+O+8j2LO6je3Qleu8jWY7SU2rNwnkLCVgFUAPbY46xPBeyYmslh8+fqlKxGqGBUgpV1rCDUpi5vBmGb+fd1wyRc+Ye3Vd9ezxilXKpWXy0McUUMrXtpMDxy2AuV1q1OcecE6lFSDKtpfZjSFUxFz3JxCfDt2qlQv/FCmUqVgqtk7UsVYIdCCWRq+pQXNzc/Jt+M1ghtL2/Y4h6pjYPw0SAagXHxg5rVmP8bZxftLsIIQY6/3reAAARYklEQVTGGjXT7MBGP2rUNINMT0lqCQCcCxQs+ihmspRCzx8KBICSJrIQMuRnWAEc91hBoVNOBYWAbGVXGGP1X//sz9VkDWu0MmQzKsCgLgxlfHaSSYrMpacs7dME7YsxH5K5vKlYKVVJuySZpCIXBSYfzxcCD9K7TdqnEgvWGF08X4j4nCWTPrm57MSsDdF1xuwShGC16ghpSBY+CvcjvYx3Yzd/U3IuuQDHmDxUgFzE50ALvVIm2A0yyV+LcyXclw1DJMEvQwyPke0ZGXKhgHfhTb/YfLnTcn6sEaBuZLOxd7LGGjUAsEPl3YZVmCCZiz7mAHtgyBhK7x2kFGJgB1b2JR+SeN02mtxXpjxncn4H70hhDxVkH4kVVXaFVazm1cZudEvQvv/pv5+32v3GVoCyrRnWDGus69HazrTRucJAnRkyDLOaIWpIJUFqzRy5ytsANZRS2tnCeUt3tFDSPq4F76RB76MxnX0ctdTEVKpg4hzeDR9ZYQxYqUpdY065HDIhpvM21FxUhxL3kY48KGWBshnvsJYM6VgEOUZWMQAg9Suh8iiugh2RIatrjD74OJqLG/r8hRW6N70LuqUNILJDxV8r+QMZo48pkvZJt3N9qUooJWfG2dy0o7VQFQrtLLG46GhzEqKJXyIdVxkwUv6Q7kgInXOEfUKh6SqShaLsi1K65FL/9E//h/Fhg7VkFaSQCQTtHjZSd2kbGUNx1uZtELM2Pof4FLFiYibLoRBigTg/NMZSM41C5UOsAGN0TdUcj5UQbbAuFc8QSYhZ11V1gI0dbq4/kICA8IMlFtgDg4KiKcBKif7JL1f9eGtT9O1FX+WCtcQGRzeS6mLet34MhRVx1gJAfLTtRSeNIIMtFJAKN182PSVRMEZ7KRFPyHlIyHIiZgGDmJKspelvSsysYvTijLOUU3SU3Crs/S1DFKr9yrQcG/fo7PBLbX4HUkQhoQATbLSjueys3ZSYkWHZAwpWAZAInFAZ1o7I8JW5WnXdMmW/Htd0xMjbRB3q0a9p/J92iXD/J38EtbkN8KmXS2MjmoYnfxqa71LY+kYD8agQcPQkB+IJUn+1uv3898v3K607H8aXcy82OlgPOaWc9CnDezptcOh643e+M0vd6NGuCS6EgDkHgAwcw9bvfE7pVMWHMPXXmpP9xHsKfwLAYK2+UMhRGUMCiHfvV6QUmkZd1JLL353phvuP5mqVcrJ28CED8P5q9ft/8Id0QvBTvwA1J3cCUr1AdnPOkY4Cwdqplw7wit6EuVot+3c0iCDXfM6B2tGE3qb8MxJgJT91F1JOlOFJBqsEydrhxTVHhYG/DzlP8Kb+akWhLuO4bjQs+3frb24hp3fvPwz3azppJ0jKaCqZXkw7qNFnzznuEhjTc869HzuzpEEj/bTpwMx1sF6rzu98g0BvlU6CNFhPp/KINBzjF0vTVuqVjre2uzJh62naQ+AjGn50F2b4/LG/ekdgbmP65Mdgbc7BfwlacWjAmP6krqCpp5km+y+JUFoPnz/S36R77hUAWeMydYkBkBIovB2pkdBffeBnmLchWA+QT3qQKfqpQUi71F0Yb9cISOfPKSN1Nx0ORzsSNDRsSTDDO9Wtb4nQCd6PuwRU2vrsKTeQbmrCzAGNmVLKGXIORBmgRhDNIfiZSj4BUKpg8lMnAOgF6RbJGfzOA3DNcUKbw9RP7nqTdok6BMqYnc80vgYAzhXdDWHrP32+7frlCyYobK0yPbkTgYMPU/VJmhcaqlOXm8aFVL+Odk1xkCShQMBXJ/CDn7oiOdn7NeWFdLrzO09QVkp6azQHSLrR3vu0S/SMkxCRhuA7n4HUWnTgPiWr+S9BGUMn+EYDNKi1Xn9zu3y7SpCG+1t/H1Bjf7W8/fwP9Mq0BNF5HYCj0uPwaZp3AtDfoac4bwM1FUguRoskAu4msBfQfIauZSJcHyS6i7FB/yXoRtMzPdzfBuvD1tPjO9x/pJUk7VJ/tUwnnQvkhByDtfR0AnynHaLxw3D/kbKBaVaachqHtW50ZzoauY/D1PJ6RUK+BGm0a+9Hv/PadMZ0OQM1m5YragQmrdT6doBmWqOggWAtZECOJ8XAitRt05ceRq1UzgHhX6XDUtIAkKRnsP3VB0iJvrtgfaeWKfvJuPu9dikCdN1yuL99+R3iZhFTkaJq6RW01kBnolNiZc5h9CPJ907YxDSNVDnQWk/Lt+ZaGTOOa5JwdeYdnaGI9Ub3U9habZb0pQ33H5NPyXsaaIetTd53FwYA159vcw60KaZdevcHH+jWsfe31o7KTCtE/Yv/7X9VM10OBVFK1SnVSoHuwbEKao55G1LIJWcxM5tf3+p2Ll638dGSAZzSWqAGVjGoIbqgjMkhlKqI1619HJRaRBeINuvsZm5M+m2uAFjNUk7Zu261YACsakY3VgmUMeet4KIlGEHap7IvJQYUOsfMGJNKkjQhxoCMTOuTppxkQvZxYy668pyAQ3pKstXOWUgJpQzeCdHm4FjFABnRGglfQWFOrenPF2Lz+bZbvKvrEuwoVOuGAcXcPazN5U18DrBLarao65oQ8lp1FSusYv7Jwx7SnkLpWJWASSxP0T66xdVKCO0GS3INFHOlJAAPjxuJ+hW1CiZ1NCSAPIn6pnYgjn6caiEAWrVpGBSsn/ZJn/gZ0iQdALTuxnFNvQpqzyLHvE3ItQ9ZnRk6jvtxRN3tfN4lMF8rYjCSjC5sLT+bKhPKcs05QzMpzrTuwhQePemOSORDT7TmGOzkPKWCxJhemZ4whmFrSVtIdx9VfbTcK9NZO6xvB+TIOSeKddha1N04fNK6azRQhvfU/R1HSqbkXOkrRVN4WtPyNnU9ZWR0nele5s8nrXiiGDwa976iCQYAD1sPgGT9z6fZZ9j6/moFkL0dNdf+PjQaENHvvDKGfjw2ONx/6syS/knapdXb37f3t6j0ier4AsWbqsO8DV239Hb9QkbtVobqRe9H5FOrljrJ3o/UOwrWdxcmea9MTyorY3qfxwmLCWjtgKfVnLjhOacJDcQ5AlKcCQJSU+ilJ0PLAk1sUHd5G16yqtbDP/RvP3x/5QRIDULXLSnyPVi782RdhmAH6vXTSDx5n3zqLkzOAJDyNlDfidTNtDy+Gu4/UlSvOps2SWX60a6nYGXvAWC4X1O8+ejHnQeKWqbFPWzt6EfqW+VtomqqQU6aSAIeUd1N83f6OujCoNbUrfMWdj4r06fs+6sP3nvYpZynmPR37z9M76QBHwJJX5XRMH25SHM6klxQRTTJQDlyjgkSaT6AfNh8ElsQwoDM6OZqqXVHxIHRfkqQSMHn/UiGMtSYt+mk8cddAn2hvP8XinynFHtrRxql0JSm6/vR/lIZ478Eb9e097wwF/xJMf6Kwq3pT2EaFNj+apW8t/e3y7crmgLSU5KSbzRVWifbuPf91SrYARvUFyrnlCABAucKAUf7iYQClIJGRctwv6bKT50Z8s4Tv7PRoM1y+Pxx2fdIsvVThm53YZbvV1Qsej8uV729Xy/fr0ZPJvQMwAlB+rJ1n1RM9MEx50nPwjkmmErABOnTNx8pQzd5T2vCu/cf/Dhyjt77/7+qM+htJDeicHGbS2pIkxbbVCRbzs6Mgg1m5pIc8w/yC3LO5hIgQQ5BjgFyyh/c0+5isOuFB26jlaZBh/TQJqfLzqHkAXKXAAE6sOrVe9+z/vzgi2lUVymksInMMhKk/UUI0/P/fXjdD5CT3Xa6Cdb/ks6itId+Nu0eGmxTAoDu73/9hneAFXNJzvcxRbfctLssja4zwieWSjpokK3YRV9z64Ri7HAxhw74I8MZuOLpLvOOY6lCuHaX+7XDwqY8am2lUCVmtXTYGpccEYEBa6iWjn/JQ5gow6ZeGPYli/uR+rawYpkLlhZzhHtGUkeppd43d7Idh0FrW0sqOXHJ8WPRC4utUcQ330VC0FtzWmqiaMaMrbWqlU4p1blq1fOZE0/8UIB4l1PO51+/vPzhvZYSK/Zr99TJ0rLmuhMs306vXu+u9hdKHC+kTDn59QoAxzD27hQA4344/Wo7fQirr7zoFqWU0oqWGmeUykihCD/HGsIT55x3f/vjHzjj/doBYyWW0sqCcXtiamvG+BgGLaxUCgARuXhB3+esQZmL8xulFmO4tK4Xwkih8L7BE6crSr1rauk48lpSzCN0PO4HxIpPkPIEFVMtLUd8At3xOiOfsZVmlr7kqJ8xPnIhgYNWvV2quB+PN7bGLLmmtg/g4E62pRYpLdZS5mqWFkthnBFkzJrjuL+irPq0HwjiJaUFhlppkpQBsKTIFzKnaJZWCjP+fPHq61/HmxDLlHKxxhHPv7UCMy+fipV9SaX3Lt6O1mxCGHXHlXExBr8+jf+Nda6iswvZpZw369OYIl9w1hChccnxvlFNArbW/emb3/MnGXOkpkoK+uIjUy9cDsGtt/l2LDkiA97JruvIAo4c3HITwsAfuTarlCLp+1QUWOdaawUOLRXjbam1d+dScue3ymilnDXHylAy2Slljzc2xcxBGu8XFoRwMQzK+FIy59wc+RhH+MRwBq3UeBPcyabrJBmHh+vvN+sdHdE265c5xAoIDAj2TYB9fMSYohbS+a1SNu4v3ckWsZX7zBrEFDnI1doLaQE6CudopezGwSNPaeKIemERGjTAGanRLZcopGWVsUesJWl3GveXUuuWEsycL3hrpesU54yaH2mbK7WsvE/3me6X2LD797/+2R5LKVFLe+DbzjKViTFGGqc0WnJdHgpUZI+YPiZtV7wDRAYVy1wk41JJs+yVcoyjeuGwNOc3x16V+yKF6Td2+nApVV/iKJUDAIAuh4GqTnOIXaf6jb388B7vS00olSLsXK0VZyR/csq5zlVI22pRyobrC+tOuw4XTMcUzNKzWsLt4Ncve2dLLHRlyrcjMpBC4oyOojh3ZDFi1psyRQqWwgydVAAth4hYtbRPnZxrO/YGHnkqRUud4iSNLrWQjKOUbS0r42IYrD+HVuGJr9ZeW0tx1P7Evf/x2/PdS0ylziiVRVa10ilkqSSX+vLDd1b3XywsrM789uxtfahTmoSQsIDt2a9IbCBXBa3EB+MiOfqfade05X4uOIYGJPhc/Pxtus6HzAzA+ZsdTQJkEFrYQx38cH1lvM9heEjt3W9+m9J/yJQgjowQJENCa226GFYnnshVciEBWq1kUhKEJKcVd2XPqUOZXDcko0qQ1hu7sMP19zS/AwA1ugKRm2i/pen++SWnB/whNXPkV36VHtKz+Zc+2Z6nFlqtqziSciGnm0DJInFkpmFYmRVUMH4rAUgrE8IY76mEZ/f6HQB0//jLnznAjHC8Ub1xcR8Ji396tok5IuC4v+CIjLNxP/T+nJCDZAJILfn1NoeA94eapYpVCltifPV2dzVcyE6nlnrvHhIo48ptKJjcyTbehGOvhHA5jy1nt36ZQ+w67vzL8cN3HDR7RG1UKUUvbP1YYMERedehNgrvMYax37wqcZTKxtvBmg1AhyVzZaEicuTA7dI8gTx2qt63aRjMyYZVlkvU0sqFJuZEnavzPd6jWjrGcdyP27MdlowciNs37H/SWgNIY3S+nYBzPnMAYBwQm12byx/er/rTirW12p84OtZTB3K4DVb3Tx0D6HLJ1vVTnKxxrWVEhh8Te+QA8EW7y+kmA7TpOjxUoMG2PtSrYTjfbeVCrsxKWptSstYKIXKYaP8ieDlBTWmup9ETWqVc8aE6sdbpItCk68/OAeiyf3DDb8/epprI10Zq6+7N76bw4/+lKgHgAVKa2l19qI0CNgAH8KkVlqo96rMjyhxZ+v35LqSbbM/M+ZsdAJDl/dDAdGQo0Pl55ayprvwqh0ChwSlfAcDu9TvrjTUih+mzz5miD0LIq4vBmpU4OuiDKWeqfTLeh+uL1YGcP7XWvF9R2i6HQQiTwpU5tBPD/wA0bGDib2L7WQAAAABJRU5ErkJggg==" dir="ltr">

Holodemiurgia

V. Appendix


Harmonic Considerations

The ancient Greek musical notation was based on the letters of the Greek alphabet, and so it is worthwhile to consider the seven vowels ΑΕΗΙΟΥΩ [aeêiouô] from this perspective. Unfortunately, there are many uncertainties in our understanding of ancient Greek music, but contemporary scholarship suggests that the vowels correspond to the pitches:

Α   Ε   Η   Ι   Ο   Υ   Ω
D#  D-  C   B   G#  G-  E

where “-” means that the note is flat by a quarter-tone. By adjusting the pitches for ΕΗΙ slightly downward, we get a correspondence between the vowels and the Cosmic Scale constructed by the Demiurge (Timaeus 35B–36B): the vowels ΑΕΗΙΟΥΩ [aeêiouô] correspond to the pitches D# to E in a descending B major scale. That is:

Α   Ε   Η   Ι   Ο   Υ   Ω
D#  C#  B   A#  G#  F#  E
mi  re  do  ti  la  so  fa

(This is the “movable do system, that is, do is the tonic of the major scale, B in this case.) These pitches may be used in singing the various “vowel songs” in this exercise. Needless to say, there is much uncertainty about the absolute pitch of ancient Greek music; the most important issue is the descending diatonic scale structure: TTS T TTS (T=tone, S=semitone), from mi down to mi. That is, the vowels in order represent a descending scale in the Lydian mode.


Return to Holodemiurgia Table of Contents

Return to Biblioteca Arcana page

Send comments about this page
Last updated: Mon. 23 Dec. 2024